

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

Ref: EEE / BOS / 2021-2022 /

Date: 3rd November 2021

Minutes of Board of Studies Meeting held on 3rdNovember, 2021

Venue: Online

Zoom Credential:

Agenda

- Choosing of open elective / core elective course for the semester students
- To Review and finalize the contents of newly framed and revised courses framed for 2019 Regulation syllabus.
- Inclusion of Employability / entrepreneurship / higher studies enhancer course.as credit course.
- To discuss and finalize the weightage for NPTEL/SWAYAM and professional training courses.

Members present:

The following points were discussed during the meeting and the minutes were recorded as below:

- The Dean of School of Electrical and Electronics, Dr. N.M.Nandhitha greeted and welcomed all members of Board of Studies.
- Dr. V. Sivachidambaranathan informed the panel that the content of syllabus Industry 4.0 were revised specifically for Electrical Engineers. He also discussed the contents of the syllabus with the board members.
- Mr.Barnabas Paul Glady explained AICTE insisted, mandatory course Universal Human Values for the Engineering students
- The Dean thanked the members for their suggestions and active participation in the meeting.

Name of the Course: INDUSTRY 4.0 FOR ELECTRICAL ENGINEERS Course Code : SEEA1403

Unit	Content	Inclusion / Deletion	Reason
1	ADVANCED TECHNOLOGY AND ADVANCED MATERIALS Advanced electro-optical sensing technology-active, passive multi-spectral and hyper spectral imaging; electronic beam steering; vacuum technology, surface and coating technology, health care technology, Nanotechnology- Nanomechanics, Nano optoelectronics; energy storage technology-next generation Li-based Batteries, Hydrogen storage, solar photovoltaic's, Flexible electronics. Intellectual Property Rights - case studies governing/pertaining to Materials/Technology. INTRODUCTION TO INDUSTRY 4.0	Deletion	The subject is converged towards electrical engineering. The basics are added in unit I.
	Introduction, Historical Context, General framework, Application areas, Dissemination of Industry 4.0 and the disciplines that contribute to its development, Artificial intelligence, The Internet of Things and Industrial Internet of Things, Additive manufacturing, Robotization and automation, Current situation of Industry 4.0. Introduction to Industry 4.0 to Industry 5.0 Advances	Inclusion	Basics of all the fields is required for industry 4.0.
II	TRANSFORMING TECHNOLOGIES IN BIOENGINEERING Establishment of smart biotechnology factory, Artificial intelligence in Bioprocess technology, Omics – Big data analysis through automation, 3D bio printing for tissue engineering. Simulation tools, RSM and Box model. Cyber physical system based telemedicine, diagnosis and therapeutics through real time biosensors. Bionanotechnology. Intellectual Property rights (IPR): Case Studies. INDUSTRY 4.0 AND CYBER PHYSICAL SYSTEM	Deletion	The subject is converged towards electrical engineering. The basics are added in unit I.
	Introduction to Cyber Physical Systems (CPS), Architecture of CPS, Data science and technology for CPS, Prototypes of CPS, Emerging applications in CPS, Domain applications of CPS: Agriculture, Infrastructure, Disaster management, Energy, Transportation. Case study: Application of CPS in health care domain.	Inclusion	is part of unit 6 in the existing syllabus.
	ADVANCEMENTS IN SUSTAINABLE BUILT ENVIRONMENT Introduction – Technological developments in Architectural, Engineering and Construction (AEC) - Building Information Modelling (BIM) using Cloud computing technology and Internet of things (IoT) – Unmanned Aerial Vehicles, sensors – Additive manufacturing in construction – Concrete 3D printing - Materials used - Lightweight and functionally graded structures - Net Zero Energy buildings, Bioswales, Biofiltration pond, Ecosan systems- Recent developments in Waste water Management, Air pollution control, waste disposal - Integration of energy, water and environmental systems for a sustainable development- Emerging Technologies: Robot Highway-	Deletion	The subject is converged towards electrical engineering. The basics are added in unit I. The content

www.sathyabama.ac.in

-			
	Vertical farming - Intellectual Property rights: Case studies.		is very much required and
	Energy Storage for Mitigating the Variability of Penewable Electricity		is the recent
	Sources- Types of electric energy storage. Potential of Sodium-Sulfur		trend in Industry 4.0
	Battery Energy Storage to Enable Integration of Wind-Case study.		pertaining to
	Electric Vehicles as Energy Storage: V2G Capacity Estimation.	Inclusion	Electrical
IV	SMART MANUFACTURING	Deletion	The subject
	Smart factories and interconnection, Smart Manufacturing – automation systems, Additive Manufacturing, Smart grids, Micro Electro Mechanical Systems (MEMS), Stealth technology, Metal Finishing, Self-propelled vehicles, e mobility, Green fuels, drones – unmanned aerial vehicles(UAVs), aerodynamics. Robotic Automation and Collaborative Robots – Augmented reality and haptics, engineering cybernetics and artificial intelligence (AI), Disruptive Technologies – Frugal Innovations –Emerging Technologies-Autonomous Robots, Swam Robot, Modular Robotics, Space craft,	Deletion	is converged towards electrical engineering. The basics are added in unit I.
	Intellectual Property Rights (IPR): Case Studies.		The content
	SMARTGRID	Inclusion	is covered as basics in unit
	Smart Grid, Smart grid solutions, Design challenges of smart grid and Industry 4.0, Building the Smart Grid-Case study.	Inclusion	1 as it is essential for Industry 4.0
۷	SMART WORLD	Shifted to	The subject
	Smart Sensors and IIOT, Smart grid, Hybrid renewable energy systems, Electronics in Smart city, Integration of Sensors in Robots and Artificial Intelligence, 5G Technology, Communication protocols, Human-Machine Interaction, Virtual Reality, Quantum Computing: Changing trends in transistor technology: Processor, Emerging Trends: Deep Space, Swarm Robots, Cyborg, Geofencing, Pervasive Computing, Intellectual Property	Unit 1 Deletion	is converged towards electrical engineering. The basics are added in unit I.
	Rights- Case Studies.		The content
	SMART APPLICATIONS		is very much
	Understanding Smart Appliances -Smart Operation-Smart Monitoring-Smart Energy Savings-Smart Maintenance, Case study-Smart Cars, Self-Driving Cars, Introducing Google's Self-Driving Car, Intellectual Property Rights.		required and is the recent trend in Industry 4.0
		Inclusion	Electrical engineering
VI	CYBER PHYSICAL SYSTEMS	Shifted to unit 2	
	Introduction to Cyber Physical Systems (CPS), Architecture of CPS, Data science and technology for CPS, Prototypes of CPS, Emerging applications in CPS including social space, crowd sourcing, healthcare and human computer interactions, Industrial Artificial Intelligence, Deep Learning, Gamification, Networking systems for CPS applications, Wearable cyber physical systems and applications, Domain applications of CPS: Agriculture, Infrastructure, Disaster management, Energy, Transportation, Intellectual Property Rights (IPR) : CaseStudies.		

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

Ref: EEE / BOS / 2021-2022 /

Date: 9th April 2022

Minutes of Board of Studies Meeting held on 9th April, 2022

Venue: Online

Zoom Credential:

Agenda

- Choosing of open elective / core elective course for the semester students
- To Review and finalize the contents of newly framed and revised courses framed for 2019 Regulation syllabus.
- Inclusion of Employability / entrepreneurship / higher studies enhancer course.as credit course.
- To discuss and finalize the weightage for NPTEL/SWAYAM and professional training courses.

Members present:

The following points were discussed during the meeting and the minutes were recorded as below:

- The Dean of School of Electrical and Electronics, Dr. N.M.Nandhitha greeted and welcomed all members of Board of Studies.
- Dr. Radhika.S explained and justified the changes made in Principles of Embedded System. She explained that unit I and II about 8051 micro controller were replaced with Arduino, SoC and SoM as it fetches the research opportunities. According to theory the corresponding modified Embedded System and DSP lab content were presented before the panel members.
- Dr.V.Senthilnayagam explained the changes made in the subject Microprocessor Interfacing and its Applications and also justified the necessary for inclusion of microcontroller along with microprocessor applications.
- The Dean thanked the members for their suggestions and active participation in the meeting.

www.sathyabama.ac.in

Subject code: SECA1706

Subject Name: Principles of Embedded System

		Inclusion	
Unit	Content	1	Reason
		Deletion	
I	RISC EMBEDDED CONTROLLER Comparison of CISC and RISC controllers - PIC 16F877	Inclusion	Content from
	architecture - Memory organization - Addressing modes - Assembly language instructions.	Deletion	third unit shifted
	8051 MICROCONTROLLER ARCHITECTURE Comparison of microprocessors and microcontrollers - 8051 architecture - hardware, I/O pins, ports, memory, counters, timers, serial I/O interrupts.		as 1 unit
II	ARDUINO	Inclusion	
	Ports, Serial Ports, PWM, ADC, Interfacing with different type of Sensors and Communication modules, Hardware timers, watchdogs and interrupt handling in Arduino. Controlling embedded system based devices using Arduino. PROGRAMMING OF 8051	Deletion	
	Addressing modes - Instruction sets - Simple programs with 8051-I/OProgrammingTimer programming-Serial communication programs- Interrupt programming- Memory programming- Delay Programs.		
III	ARM PROCESSOR BASED Overview of ARM 7 Architecture- ARM 7 Architecture-Register organization- Modes and states. Overview of Intel ARM based hard processor System on Chip (SoC) with an on chip FPGA - Overview of System on Module (SoM) using ARM based SoC. RISC EMBEDDED CONTROLLERS	Inclusion	
	Comparison of CISC and RISC controllers - PIC 16F877 architecture - Memory organization - Addressing modes – Assembly language instructions- ARM 7 Architecture-Register organization- Modes and states.		
IV	EMBEDDED NETWORKING		
	Integrated Circuit (I2C) - Serial Peripheral Interface (SPI) - Universal Serial Bus (USB) - Controller Area Network (CAN)- Ethernet- Distributed Embedded system		
	EMBEDDED NETWORKING Distributed Embedded system - Embedded networking - RS 232 - RS485 - Inter-Integrated Circuit (I2C) - Serial Peripheral Interface (SPI) - Universal Serial Bus (USB) - Controller Area Network (CAN)- Ethernet.		

(DEEMED TO BE UNIVERSITY) Accredited "A" Grade by NAAC | 12B Status by UGC | Approved by AICTE

www.sathyabama.ac.in

V	EMBEDDED SOFTWARE DEVELOPMENT TOOLS and	
	REAL TIME OPERATING SYSTEM	
	Introduction to assembler - Compiler -Cross compilers -Linker/	
	Locators - Simulators - RToS - Desktop OS versus RTOs -	
	Software architectures - Round Robin, Round-Robin with	
	Interrupts, Function Queue Scheduling architecture - ISRs and	
	Scheduling -Task management - Task scheduling - Race	
	conditions - Priority Inversion Inter task Communication.	
	REAL TIME OPERATING SYSTEMS	
	Introduction - Desktop OS versus RTOs - Task management -	
	Task scheduling - Race conditions - Priority Inversion - ISRs	
	and Scheduling - Intertask Communication.	

Subject code: SECA2703

Subject Name: EMBEDDED AND DSP LAB

List of Experiments

Existing	Revised	Reason
1. Basic illustration programs using		
arithmetic, Logical and bit-oriented	Using PICF877	According to theory lab experiments are modified.
instructions for AT89C51.	1. Basic illustration programs for	
2. Interfacing light bulb using relay.	arithmetic operations using PIC16F877.	Deletion
3. Interfacing LCD display in static		Inclusion
display.	2. Basic illustration programs for	
4. Interfacing stepper motor with	PIC16F877.	
ULN2003 to rotate in specific angle.	3 Interfacing I FD	
5. Interfacing DC motor with H-bridge	5. Interfacing EED.	
to make it rotate in front, back, left,	4. Illustration of TIMER.	
right.	5. Interfacing of LDR .	
6. Illustration of interrupts using LED	Using Arduino	
on/off using timer delay.	Using Ardunio	
7. Illustration of serial communication	6. Interfacing LCD for display.	
to transfer data from one	7. Interfacing of sensors.	
microcontroller to other.	8. Interfacing with the wireless communication modules	
	9. Design of Stepper Motor Control System	
	10. Design of Temperature Monitoring System Using RF Modem	

www.sathyabama.ac.in

PROGRAMS USING MATLAB	DSP LAB	
1. Generation of Standard	Programs using MATLAB	
Signals.	1. Generation of Standard Signals.	
Signals. 2. Design of FIR filters using Windowing technique. 3. Design of IIR Filters using Butterworth filters. USING TMS320CX2407 DSP Processor 1. Single pulse fixed PWM generation using general purpose Timers. 2. Two pulse fixed PWM generation using Timer 1 and Timer 2. 3. Six pulse fixed PWM generation using full compare unit.	 Generation of Standard Signals. Design of FIR filters using Windowing technique. Design of IIR Filters using Butterworth filters 	
4. Six pulse fixed PWM generation with		
dead band.		

Subject code: SECA1508

Subject Name: Microprocessor, Interfacing and Its Applications

Unit	Content	Inclusion / Deletion	Reason
Ι	8085 MICROPROCESSOR 8085 Architecture-Timing Diagram-Interrupts-Addressing Modes- nstruction Formats-Instruction Set-Programming of 8085.		
II	8086 MICROPROCESSOR 8086 Architecture-Maximum and Minimum Mode-Memory Banks- Memory Segmentation-Programming Model -Instruction Set- Programming of 8086.		
III	PERIPHERALS INTERFACING USING 8085/8086 Introduction, memory and I/O interfacing, data transfer schemes, programmable peripheral interface (8255), programmable DMA controller (8257), programmable interrupt controller (8259), Universal synchronous asynchronous receiver transmitter (USART) (8251), programmable counter/interval timer(8254		
IV	INTERFACING CONCEPTS WITH 8085/8086 Switches-Matrix Keyboard-interfacing LED, 7 segment LED, LCD, Analog to Digital Converter (ADC), Digital to Analog Converter (DAC), Memory Interfacing (RAM and ROM).		
V	APPLICATIONS USING 8085/8086 and Introduction to Microcontroller Stepper motor interfacing with ULN2003-specific angle rotation, Motor speed control, Temperature control system, Traffic light control-6V relay to control AC Bulb- PWM generation for Single phase controlled rectifier with specific firing angle 8051 MICROCONTROLLER ARCHITECTURE Comparison of microprocessors and microcontrollers - 8051 architecture - hardware, I/O pins, ports, memory, counters, timers, serial I/O interrupts. Addressing modes - Instruction sets - Simple programs with 8051	Inclusion Deletion	